
Research in Industrial Projects for Students

Sponsor

The Aerospace Corporation

Final Report

Combining Genetic Algorithms and Machine
Learning (CgALM) for Modeling Complex

Systems

Student Members

Rachel Duquette (Project Manager), Boston College

duquetra@bc.edu

Jacob Chang, University of Notre Dame

Katherine Thai, Rutgers University

Tongyu Zhou, Williams College

Academic Mentor

Minh Pham, minhrose@ucla.edu

Sponsoring Mentors

Dr. Victor Lin, victor.s.lin@aero.org

Dr. Leah Ruckle, leah.ruckle@aero.org

Dr. Karen Wood, karen.wood@aero.org

Mr. James E. Gidney, Jr., James.E.Gidney@aero.org

Date: August 21, 2019

This project was jointly supported by The Aerospace Corporation and NSF Grant DMS
1440415.

Abstract

Essential for services such as communication, navigation, and weather prediction, satellite
constellations must be designed to minimize loss of coverage while subject to constraints
on space traffic and the number of satellites available. Genetic algorithms (GAs) offer a
versatile method of optimization with demonstrated success in applied problems. However,
in the case of a computationally expensive problem, such as satellite coverage of the earth,
the necessity of repeated fitness evaluations prevents convergence of a GA in a feasible time
frame. Implementing a more efficient surrogate model to estimate the expensive objective
function poses a potential solution to this dilemma. Recent advances in machine learning
methods, in particular neural networks, make them a compelling candidate as a surrogate
function. A genetic algorithm incorporating an ensemble of neural networks as a surrogate
function is evaluated on a set of canonical test problems, including those with discrete inputs
and multimodal objective functions, and finally applied to the problem of constellation
design.

3

Acknowledgments

This RIPS 2019 report was created by Jacob Chang, Rachel Duquette, Katherine Thai, and
Tongyu Zhou, with the assistance and mentorship of our academic mentor, Minh Pham.

Firstly, the team would like to thank The Aerospace Corporation for their dedication
and collaboration with RIPS over the past several years. Without their sponsorship, this
program and project would not have been possible. In particular, we would like to thank our
industry sponsors, Victor, Leah, Karen, and Jim. Their support and guidance this summer
was invaluable, and the project would not have been successful without them. We owe
many thanks to Minh, our academic mentor, and Susana, RIPS Director, for their advice,
assistance, and support in our endeavours throughout the program. Finally, we would also
like to thank David Medina and the IT Department, the Finance Department, and all the
IPAM staff who made this program possible.

5

Contents

Abstract 3

Acknowledgments 5

1 Introduction 13

1.1 The Aerospace Corporation . 13

1.2 The Proposed Problem . 13

1.3 Our Team’s Approach . 14

1.4 Benchmark Functions . 14

2 Genetic Algorithms 19

2.1 Background . 19

2.2 Experiments & Methodology . 23

2.3 Results . 25

3 Machine Learning 33

3.1 Background . 33

3.2 Experiments & Methodology . 38

3.3 Results . 39

4 Machine Learning Genetic Algorithms 53

4.1 Background . 53

4.2 Experiments & Methodology . 56

4.3 Results . 58

5 Dilution of Precision 63

5.1 Background . 63

5.2 Experiments & Methodology . 68

5.3 Results . 70

6 Future Work 73

6.1 Adaptive GA Parameters . 73

6.2 Deep Learning . 73

6.3 Machine Learning Genetic Algorithm (MLGA) Model Improvements 73

6.4 Additional Parallelization . 74

6.5 Multi-Objective Optimization . 74

6.6 More Complex Satellite Constellation Models 74

7

A Genetic Algorithms 75
A.1 Alternative Selection and Crossover Schemes 75
A.2 Taguchi Results . 76

B Support Vector Regression 87
B.1 Theoretical Background . 87
B.2 Experiments & Methodology . 89
B.3 Results . 89

C Abbreviations 95

8

List of Figures

2.1 Generic outline of a genetic algorithm . 20
2.2 Sphere function: 1000 generation limit convergence plot 26
2.3 Sphere function: running mean termination criterion plot 27
2.4 Rastrigin function: running mean termination criterion plot 27
2.5 Bukin No. 6 function: running mean termination criterion plot 28

3.1 Neural Network Node . 34
3.2 MLP Accuracy on Sphere Function . 40
3.3 MLP Accuracy on Griewangk Function . 40
3.4 MLP Effect of training set size on accuracy 41
3.5 MLP Effect of learning rate on accuracy . 42
3.6 MLP Effect of learning rate on loss . 43
3.7 MLP Effect of batch size on accuracy . 44
3.8 RBF Effect of hidden nodes on accuracy . 46
3.9 RBF Effect of epoch number on accuracy 48
3.10 RBF Effect of batch size on accuracy (a) . 49
3.11 RBF Effect of batch size on accuracy (b) . 50
3.12 RBF mean square error loss rates . 51

4.1 Outline of surrogate function usage within a genetic algorithm. 55
4.2 Schwefel function: ensemble results . 59
4.3 Rastrigin function: ensemble results . 60

5.1 Illustration of DOP . 66
5.2 Earth-centered, Earth-fixed coordinate frame 67
5.3 Earth-centered inertial coordinate frame . 67
5.4 Classical orbital elements . 68
5.5 Good global PDOP . 70
5.6 Poor global PDOP . 71

B.1 Two dimensional SVR illustration . 88
B.2 Illustration of kernel trick . 88
B.3 Sphere function: kernel tuning 1 . 91
B.4 Sphere function: kernel tuning 2 . 92
B.5 Foxholes function: training set comparison 93
B.6 Schaffer function: training set comparison 94

9

List of Tables

1.1 Benchmarking Functions . 15
1.2 Squares Problems . 16
1.3 Discretized Benchmarking Functions . 17

2.1 Sphere function: fitness vs. speed . 30
2.2 Rastrigin function: fitness vs. speed . 31

5.1 Varieties of DOP Values . 65
5.2 Meaning of DOP Values . 65
5.3 Range of Walker constellation parameters 69
5.4 PDOP: best final fitness values across ensemble models 70
5.5 PDOP: Runtime in seconds across ensemble models 71

A.1 Breakdown of Taguchi experimental parameters 76
A.3 Breakdown of Taguchi experiments and parameter settings 77
A.4 Sphere function: Taguchi results . 78
A.5 Rosenbrock function: Taguchi results . 79
A.6 Step function: Taguchi results . 80
A.7 Quartic function: Taguchi results . 81
A.8 Foxholes function: Taguchi results . 82
A.9 Schwefel function: Taguchi results . 83
A.10 Rastrigin function: Taguchi results . 84
A.11 Griewangk function: Taguchi results . 85

B.1 Best SVR parameters by R2 values . 90

11

Chapter 1

Introduction

1.1 The Aerospace Corporation

This project is sponsored by The Aerospace Corporation, a federally funded research and de-
velopment center committed to the space enterprise. They are headquartered in El Segundo,
California, and provide services to both private companies and governmental agencies, such
as the U.S. Air Force. These services include technical analyses and assessments, as well as
day-of-launch support and risk evaluation.

Aerospace conducts research to solve a variety of optimization problems, ranging from
the management of space traffic to the placement of satellites to minimize downtime and
maximize global coverage. One challenge in solving optimization problems is the compu-
tational expense of explicitly evaluating the quality of potential solutions. Consequently,
researchers are always interested in methods to mitigate the time and intensity of the re-
quired computations.

1.2 The Proposed Problem

The Aerospace Corporation has proposed a RIPS project in which machine learning tech-
niques will be integrated into genetic algorithms with the goal of improving genetic algo-
rithm performance on global optimization problems. The Aerospace team is developing an
algorithm that leverages both genetic algorithm (GA) and machine learning (ML) techniques
solve a complex modeling problem: the determination of Walker constellation parameters
that optimize global dilution of precision performance, subject to constraints on the number
and distribution of satellites. This application problem will be addressed in Chapter 5 of
this report.

We will begin with a simple genetic algorithm framework. In an effort to improve the
computational time required to evaluate the fitness of the individuals during each iteration
of the algorithm, we will implement a machine learning method to approximate the objective
function. Several machine learning techniques will be studied and compared before one is
selected for the final software product.

We will also identify, compare, and select different methods and schemes for the selec-
tion, crossover, and mutation phases of the genetic algorithms.

The genetic algorithm with machine learning integration will then be used to solve for
a set of parameters that define an ideal Walker constellation.

13

1.3 Our Team’s Approach

We conducted an initial review of the existing literature, focusing specifically on schemes
and techniques researchers used to optimize standalone genetic algorithm performance.
Next, we investigated commonly used machine learning methods, comparatively evaluating
them on their ability to approximate functions of varying degrees of complexity and their
suitability for incorporation within a genetic algorithm.

After establishing aspects of the genetic algorithm we would like to test, we constructed
a generic GA framework using the Python package DEAP (Distributed Evolutionary Al-
gorithms in Python) [10]. This general algorithm was then modified for our operators of
interest, including selection, crossover, and mutation, and tested on 18 common optimiza-
tion benchmark functions. To effectively qualify the wide range of hyperparameter values
affecting algorithm performance, we looked further into design experiments that would
identify an ideal set of these hyperparameters to optimize our objective functions while
simultaneously reducing computing time. A Taguchi orthogonal array was implemented
alongside signal-to-noise ratios and ANOVA analysis to isolate ideal parameter levels and
identify which factors were statistically significant in run time and identification of a func-
tion’s global minimum.

Next, we implemented three machine learning techniques for function approximation,
including support vector regression (SVR), multilayer perceptron (MLP) networks, and ra-
dial basis function (RBF) networks. We hand-tuned the hyperparameters for each model in
order to optimize performance of the predictor. Because we desired greater generalizability
in our models, we decided to not proceed with SVRs after finding that their parameters
were too sensitive to minor adjustments. After identifying an ideal set of parameters for
each category of benchmark function (see Tables 1.1, 1.2, 1.3), we embedded these methods
within the genetic algorithms by substituting the expensive fitness evaluation step with the
surrogate model.

We then constructed a hybrid machine learning-assisted genetic algorithm (MLGA) by
introducing the machine learning models in ensemble after a set number of generations
passed in the genetic algorithm. Because we wanted the predictions to maintain high
accuracy, we weighted each model in the ensemble accordingly as a function of its generalized
mean squared errors. After the genetic algorithm converged to a pool of optima, we then
reintroduced the original objective function to evaluate fitnessses of the final population.

After confirming the effectiveness of the MLGA on our benchmark functions, we ap-
plied our model to the computationally expensive Walker constellation problem, trying to
minimize 98% global position dilution of precision (PDOP).

1.4 Benchmark Functions

Most research in surrogate-assisted evolutionary optimization has focused either on a specific
real-world application or on a set of general test problems, as there are no benchmarking
functions designed specifically for testing surrogate function efficacy [17]. For the purposes
of our problem, we tested genetic algorithms on eighteen canonical optimization problems
spanning a wide variety of different features and levels of difficulty. The first fourteen test
functions were drawn from Digalakis [7], with minor corrections from More [26]. Of these,
the first eight are bounded problems, where the space of possible solutions is bounded by
some cube or hypercube, and are listed in Table 1.1. The remaining six functions are
nonlinear squares minimization problems, found in and are listed in Table 1.2.

14

Table 1.1: Benchmarking Functions

Name Formula Bounds Dim

F1 Sphere f1 =
2P
i=1

(xi)
2 jxij � 5:12 2

F2 Rosenbrock f2 = 100(x2
1 � x2)2 + (1� x1)2 jxij � 2:048 2

F3 Step f3 =
5P
i=1

[xi] jxij � 5:12 5

F4 Quartic f4 =
30P
i=1

(ix4
i + Gauss(0; 1)) jxij � 1:28 30

F5 Shekel’s
Foxholes

f5 =
1

1

500
+

25P
j=1

1

fj(X)

fj = 0:002 +
25P
j=1

�1

j
+

2P
i=1

(xi � aij)2
�

jxij � 65:534 2

F6 Schwefel f6 = 10V +
10P
i=1

(�xi sin(
p
jxij));

V = 418:9829101

jxij � 500 10

F7 Rastrigin f7 = 20A+
20P
i=1

(x2
i � 10 cos(2�xi)),

A = 10

jxij � 5:12 20

F8 Griewangk f8 = 1 +
10P
i=1

� x2
i

4000

�
�

10Q
i=1

�
cos
� xip

i

��
jxij � 600 10

15

Table 1.2: Squares Problems

Name Formula Dim

F9
Watson
Function

fi(x) =
nP
j=2

(j � 1)xjt
j�2
i �

� nP
j=1

xjt
j�1
i

�2 � 1;

1 � i � 29, ti = i
29

,
f30(x) = x1,
f31(x) = x2 � x2

1 � 1

2 � n � 31
m = 31

F10
Extended
Rosenbrock
Function

f2i�1(x) = 10(x2i � x2
2i�1)

f2i(x) = 1� x2i�1

n 2 Z2,
m = n

F11
Penalty
Function
II

f1(x) = x1 � 0:2

fi(x) = a
1
2

�
exp

�
xi
10

�
+ exp

�xi�1

10

�
� yi

�
;

2 � i � n
fi(x) = a

1
2

�
exp

�xi�n+1

10

�
+ exp

��1
10

�
� yi

�
;

n < i < 2n

f2n(x) =
� nP
j=1

(n� j + 1)x2
j

�
� 1 where

a = 10�5 and yi = exp(i
10

) + exp(i�1
10

)

n variable,
m = 2n

F12
Powell
Badly
Scaled
Function

f1(x) = 104x1x2 � 1
f2(x) = exp(�x1) + exp(�x2)� 1:0001

n = 2,
m = 2

F13
Gulf
Research
and Devel-
opment
Function

fi(x) = exp
��jyi�x2jx3

x1

�
� ti

ti = i
100

yi = 25 + (�50 ln(ti))
2
3

n = 3, n �
m � 100

F14 Extended
Powell
Singular
Function

f4i3(x) = x4i�3 + 10x4i�2

f4i2(x) = 5
1
2 (x4i�1 � x4i)

f4i1(x) = (x4i�2 � 2x4i�1)2

f4i(x) = 10
1
2 (x4i�3 � x4i)

2

n 2 Z4,
m = n

16

An area of open research within the usage of surrogates in evolutionary computation is
their implementation on non-continuous problems, in particular on combinatorial problems.
The optimization problem suggested by Aerospace on Walker constellation design features
a discrete input space, adding additional importance to testing in this domain of functions.
To that end, we also investigated four optimization problems with discrete inputs, suggested
by Aerospace: Ackley, Levy, Schaffer No. 2, and Bukin No. 6 (Table 1.3. These functions,
while normally continuous, were chosen to be discretized on the criteria that both the global
minima and local minima were located on integer points and that the search space remained
a reasonable size with integer points only.

Table 1.3: Discretized Benchmarking Functions

Name Bounds Dimensions

F15 Ackley jxij � 33 d = 10

f15 = �a exp
�
� b
q

1
d

Pd
i=1 x

2
i

�
� exp

�q
1
d

Pd
i=1 cos(cxi)

�
+ a+ exp(1)

F16 Levy jxij � 10 d = 10

f16 = sin2(�w1)+
d�1P
i=1

(wi�1)2[1+10 sin2(�wi+1)]+(wd�1)2[1+sin2(2�wd)]

wi = 1 + x1�1
4
; 8i 2 1; : : : ; d

F17 Schaffer No. 2 jxij � 100 d = 2

f17 = 0:5 +
sin2(x2

1�x2
2)�0:5

[1+0:001(x2
1+x2

2)]2

F18 Bukin No. 6 jx1j � 15, jx2j � 3 d = 2

f18 = 100
p
jx2 � 0:01x2

1j+ 0:01jx1 + 10j

17

Chapter 2

Genetic Algorithms

Genetic algorithms are inspired by Darwinian natural selection. The algorithm maintains
a population of individuals, where each individual represents a candidate solution to the
objective function, which evolves over the run of the algorithm. Selection, crossover, and
mutation schemes aid the algorithm in traversing the search space and locating the global
optimum. The “fitness” of each individual is determined by direct computation of the
objective function. In the case of minimization, individuals with lower fitness values are
demonstrated to be better candidate solutions and are favored in selection processes moving
forward.

GAs are versatile and effective tools in applied problems as they are able to traverse
search spaces relatively well. However, one disadvantage of these algorithms is the necessity
to constantly reevaluate the objective function, which can be computationally expensive,
given a complex objective function. An outline of a generic genetic algorithm can be seen
in Figure 2.1

2.1 Background

2.1.1 Selection

After generating the starting population and evaluating fitnesses for the original population
members, selection schemes must be implemented to determine which individuals are chosen
as parents. Several different selection strategies are outlined below.

� Tournament: A random number of individuals is taken from the population and
placed in direct competition with one another, selecting the strongest individual as
a parent. The tournament is repeated until there are sufficient parents to move onto
the crossover stage. Small tournament sizes are helpful for maintaining diversity,
since weaker population members have a smaller pool of individuals to “defeat” and
have greater opportunity to move forward as parents. On the other hand, larger
tournament sizes allow the strongest members of a population to pass their traits
onward more quickly, but risks premature convergence upon a local minimum if there
is insufficient diversity in the initial population. Another downside of this technique
is that certain individuals might not be chosen to compete in tournaments at all and
hence, will be lost, even if they are considered strong population members.

Tournament-style selection schemes are generally considered to be the most efficient
[28], due to the binary competition selections rather than utilizing sorting and rank-

19

Figure 2.1: Generic outline of a genetic algorithm

ing algorithms. Overall, this technique is quite efficient while also preserving low
susceptibility to takeover by dominant individuals.

� Elitism: With selection schemes being largely reliant on random processes, even
the strongest population members face the possibility of being eliminated. Elitism
is a general strategy for giving the strongest performers preferential treatment in
selection. We explored two main forms of elitism: archival and elitist recombination
[21].

� Archive: Archival systems keep record of the top performing population mem-
bers and allow them to be incorporated into the population at each selection
stage of the algorithm. This ensures that highly fit individuals constantly have
the opportunity to lend their attributes to the formation of a new generation,
even if they have been eliminated in other stages due to random processes. In
our algorithms, the archive is set as a given percentage of the population size,
and before the selection phase, individuals from the existing population are ran-
domly selected for replacement by the archive members. One downside of this
technique is the potential for rapid loss of diversity, and hence, convergence

20

upon a local minimum.

� Elitist recombination: This is a secondary tournament where offspring must
compete with their parents in order to be included in the next generation. Af-
ter parents are selected and crossover occurs to form offspring, the family unit
competes against one another. The top two performers of this tournament are
passed forward. This prevents backwards movement and ensures that good solu-
tions are not lost during the search process. One disadvantage of this technique
is the necessity for additional objective function evaluations in order to compare
performers within a family.

This list is not exhaustive, and information on alternative methods may be found in Ap-
pendix A.

2.1.2 Crossover

Also known as recombination, crossover is a critical step in ensuring the overall improvement
of the genetic algorithm throughout each iteration. It provides a means of exchanging
information, or ”traits,” between two parents to pass onto their offspring. It is a stochastic
process that generates more diversity while maintaining an overall high fitness in the existing
population. While we explored various crossover schemes, such as partially matched, blend,
simulated binary, and voting recombination, operating on a wide variety of different data
structures, we focused on the following two as they they were most suitable for a genetic
algorithm where candidate solutions are represented as arrays of points. More information
on the other methods investigated may be found in Appendix A.

� One-point: A single, common intersection point is randomly selected on both par-
ents. Values to the right of this intersection point are directly swapped to form two
offspring.

� Uniform: Each consecutive bit in the offspring is chosen from either parent with a
probability p for one parent and a probability 1 � p for the other. While p = 0:5
for both parents is the most standard setup, other mixing ratios can also be used,
resulting in certain offspring that will inherit more genetic information from one
parent than the other.

To perform an adequate search that is simultaneously comprehensive and efficient, the
crossover scheme utilized must ultimately be global and unbiased. In a study conducted by
Poli and Langdon [30], one-point was found to only exchange very small amounts of genetic
material in a converged population. The search performed with this operator also grew
increasingly local and biased as time went on. In contrast, although uniform crossover also
became more local, it remained largely unbiased as any information in either parent has
the same chance of being inherited by the offspring. For our implementation of the genetic
algorithm, we implemented and tested both the one-point and uniform crossover schemes.

2.1.3 Mutation

Mutation introduces or reintroduces diversity into the population by perturbing individuals.
This additionally diversity can help the GA to explore the search space and can also help
to prevent premature convergence at a local minima.

21

During each iteration of the genetic algorithm, certain offspring are chosen for mutation.
Within this pool of offspring, certain genes are then mutated. Because we must choose the
individuals to mutate, select the specific genes on which the mutations occur, and actually
perform the mutation, there are many different mutation strategies and schemes to consider
when developing GAs.

Mutation Operators

� Gaussian: A random value from a Gaussian distribution with user-defined standard
deviation and mean is added to a “gene.” This is used in classical evolutionary
programming.

� Cauchy: A random value from a Cauchy distribution is added to a “gene.” The
thicker tails of the Cauchy distribution encourage larger mutations and are best suited
for a search space that contains local optima that are far away from each other [39].

Mutation Schemes

Mutation schemes generally describe the way in which individuals and genes are selected
for mutation. The simplest mutation schemes have a predetermined frequency of mutation,
such as mutating one gene per individual or mutating a gene with probability 1=n, so
that, on average, one gene per individual is mutated. The probability that an individual
is mutated and the probability that a gene is mutated are both parameters that must be
chosen.

There are many other mutation schemes and algorithms, which were investigated but
not utilized in this project. Some of these options are listed in Appendix A.

2.1.4 Termination Criterion

In general, a genetic algorithm should terminate when the population of solutions contains
a solution attaining the global minimum or when the population of solutions has ceased
to improve and further generations would not improve the result. The termination crite-
rion is then exceedingly important: it must allow the genetic algorithm enough time to
successfully converge while maintaining a suitable exploration phase, yet avoid unnecessary
computation. Furthermore, an effective termination criterion must assure that the algo-
rithm will eventually terminate. In practice, it is difficult to achieve reliability (assurance
of termination) while simultaneously avoiding premature or late convergence.

� Limit-Based Termination: Convergence criteria that take the form of a limit on
either the run time or number of generations for which the genetic algorithm may
run. There are a number of variations of this termination criterion, such as a bound
on the number of objective function evaluations. Due to the nature of a genetic
algorithm, these variations are all linearly dependent, meaning that given a bound in
one form, it is possible to convert to an equivalent bound in any of the alternate forms
[16]. Such a criterion assures reliability, but at the expense of performance. When
the genetic algorithm reaches this limit, it halts, without regard to the fitness of the
individuals in the population. If the criterion is set too high, the genetic algorithm
may run for several generations without improvement, delaying receiving a result
and wasting computational power. Conversely, a too low criterion will prevent the
algorithm reaching a good solution, rendering the result minimally useful.

22

� Bound-Based Termination: Criterion that causes algorithm to terminate when
a solution hits a specified bound. In this case, the genetic algorithm terminates
when the fitness of the best individual in the population reaches or exceeds a certain
threshold. While this termination strategy ensures the success of the algorithm’s
result, it is not guaranteed to cause the algorithm to halt in finite time. In particular,
if the population contains outliers or the algorithm converges to a local minimum, it
may never terminate [16]. In practice, this termination criterion also requires some
knowledge of the fitness value of the optimal point in order to set an appropriate
bound, limiting its utility. Other bound-based termination criteria terminate when
the standard deviation of the population or the difference between the fitness values of
the best and worst individuals in the population drop below a certain threshold. Both
attempt to capture the internal diversity of the population and terminate when it has
reached a level at which further improvement is unlikely or will be infeasibly slow.
Like a bound on the fitness, these termination criteria are not reliable, as outliers in
the population or local minima of the fitness function may cause the algorithm never
to satisfy the necessary criterion. Furthermore, they are unsuited to discrete spaces
where the differences between values are necessarily not arbitrarily small [16].

� Running Mean Termination: The fitness of the best individual in the current
population is compared to the average of the fitness values of the best individuals
in the last n generations. Based on testing of continuous and discrete benchmark
functions, Jain et al [16] recommend n = 15 as the comparison distance. When
the difference is less than the chosen precision level, the algorithm halts. Unlike the
previous criteria, running mean is guaranteed to converge within finite time and is
suitable for discrete spaces. Running mean does not guarantee the fitness of the
final solution, but where n is chosen in proportion to the complexity of the function,
it avoids needless computation if the algorithm has ceased to improve due to being
trapped in a local minimum. Thus running mean provides a reasonable compromise
between reliability and performance.

2.2 Experiments & Methodology

2.2.1 Design of Genetic Algorithms

Our genetic algorithms were implemented using DEAP [10]. However, the selection schemes,
mutators, crossover schemes, and stopping criterion were written as functions and appended
onto the algorithm’s DEAP framework. A generic form of the algorithm used in this report
uses tournament-based selection, one-point crossover, Gaussian mutation, and a generation-
based stopping criterion. This generic algorithm was tested on the 18 canonical benchmark
functions described in Chapter 1.

As the functions were tested, modifications such as the running mean termination cri-
terion, elitism, uniform crossover, and Cauchy mutation were developed and implemented.
While each of these techniques had their own strengths and benefits, they also increased
the variety of hyperparameters needed to be tested and tuned to improve GA performance.

2.2.2 Taguchi Design of Experiments

Orthogonal arrays were implemented to create a list of experiments and efficiently test dif-
ferent parameter combinations while reducing the experimental numbers of a full factorial

23

approach. In each orthogonal array, the columns “consist of a number of conditions depend-
ing on the levels assigned to each factor,” while the rows represent a unique experiment
[31].

The formal definition of an orthogonal array, as written in [14] is presented below:

De�nition 1 (Orthogonal Array) An N �k array A with entries from S is said to be an
orthogonal array with s levels, strength t and index � (for some t in the range 0 � t � k if
every N � t subarray of A contains each t-tuple based on S exactly � times as a row.

In order to find or construct an appropriate orthogonal array, one must first determine
which factors and levels to test. It is important to note that orthogonal arrays are non-
trivial to construct, especially for arrays with different levels of factors (i.e. one factor with
three levels and another factor with two levels), or when a factor has more than three levels.
If a pre-existing appropriate array cannot be found, it is often best to reduce the number of
factors being tested and/or consolidate the levels of the factors. This restriction in variable
freedom is one of the major downsides of Taguchi’s method, since researchers must often
conform their experiments to the design rather than the design to the experiments.

2.2.3 Analysis of Results

After our initial experiments were conducted, signal-to-noise ratios (SNR) were calculated
and compared to determine optimal parameter settings. While this ratio was originally
and most typically used in science and engineering problems, it also has great utility in the
realms of mathematics, statistics, and data analysis. SNR is a useful tool for determining
the strength of a certain signal with respect to background noise. In GAs, this technique
is highly useful for filtering through the noise coming from the various random processes
inherent to the algorithm. With repeated trials of GAs often yielding drastically different
results, SNRs can isolate the variation in performance and fitness convergence coming from
specific hyperparameters rather than the stochasticity of the algorithms themselves.

There are several different forms of the SNR equation, depending on the type of op-
timization problem at hand (i.e. minimization versus maximization). These forms are
represented below [13]:

SNR = �10 log
� ŷ

s2y

�
(2.1)

SNR = �10 log
�
(1=n)

� nX
i=1

y2
i

��
(2.2)

SNR = �10 log
�
(1=n)

� nX
i=1

1

y2
i

��
(2.3)

Since our optimization problems dealt with minimization, we were mainly concerned
with Equation (2.2). Here, note that n represents the population sizeyi represents the final
fitness value of each individual in the last generation, and ŷ represents the predicted fitness
value of an individual. We ran each experiment 100 times and calculated SNRs for each
trial. An average SNR for each experiment was then computed, to be used in later statistical
analysis.

The average SNR values from the experiments were compared on a factor by factor
level, comparing the average SNR for a factor across all levels. For example, when looking

24

at the effect of population size, we would average the SNR scores for all experiments that
used a population size of 250, then the average SNR scores for all experiments of population
size 500, and then 1000. These average scores can be compared, and the highest SNR is
determined to be the “preferred” setting of the three options. This process can be performed
on all the different factors until we can isolate an “ideal” set of parameters.

Next, analysis of variance (ANOVA) was used to determine which factors were sta-
tistically significant in affecting optimization. Essentially, an ANOVA test compares the
variation of the SNR values against the various factors to determine whether or not they
have a statistically significant overall effect. In ANOVA, the test statistic is the F-statistic
from the Fisher distribution, with a typical p-value < 0:05).

After performing ANOVA on all factors to test their effect on SNR, one can determine
which variables have a statistically significant effect on optimization. Using this information,
we are able to determine which variables are most sensitive to future tuning, and the levels
at which these variables should be set. Additionally, this also provides information on which
variables have relatively little effect on optimization, and signals that certain factors may
be left constant to reduce the quantity of hyperparameters in question.

2.3 Results

The following section contains some results for the sphere, Rastrigin, and Bukin No. 6
functions. While the sphere function is quite simple to optimize, the Rastrigin function has
a large number of local minima, making minimization difficult. The Bukin No. 6 function
is interesting in this analysis because it has been discretized, adding an additional layer of
complexity.

2.3.1 Determination of Parameters

Initial tests of the generic GA were performed with a 1000 generation-limit. This is shown
in Figure 2.3.

25

Figure 2.2: Sphere function: 1000 generation limit convergence plot

However, when looking at this plot, it is clear that after the first few generations,
improvements in fitness convergence are quite negligible. Due to this, the running mean
termination criterion (with the 15 generation comparison recommended by Jain et. al [16])
was implemented to prevent the GA from unnecessarily evaluating generations. Examples
of plots displaying this improved convergence efficiency are shown by Figures 2.3, 2.4, and
2.5.

26

2 4 6 8 10 12 14
Generation

0

10

20

30

40

50

Po
pu

la
ti

on
 fi

tn
es

s

Sphere Function

Figure 2.3: Sphere function: running mean termination criterion plot: convergence plot of the
sphere function after the running mean stopping criterion was implemented (with 15 generation
comparison). It now terminates after 15 generations, rather than 1000.

0 20 40 60 80 100
Generation

0

100

200

300

400

500

Po
pu

la
ti

on
 F

it
ne

ss

Rastrigin Function

Figure 2.4: Rastrigin function: running mean termination criterion plot - convergence plots of the
Rastrigin function after the running mean stopping criterion was implemented (with 15 generation
comparison). It now terminates after approximately 100 generations, rather than 1000.

27

2 4 6 8 10 12 14
Generation

0

50

100

150

200

Po
pu

la
ti

on
 fi

tn
es

s

Bukin No. 6 Function

Figure 2.5: Bukin No. 6 function: running mean termination criterion plot - convergence plots of the
Bukin No.6 function after the running mean stopping criterion was implemented (with 15 generation
comparison). It now terminates after approximately 15 generations, rather than 1000.

28

As seen from Figures 2.3, 2.4, and 2.5, the running mean criterion has a drastic effect
on the amount of generations run, and thus, the amount of objective function evaluations
necessary. Although these four functions are relatively trivial to run to 1000 generations,
as the objective function becomes more complex, such as the satellite constellation problem
explored in Chapter 5, evaluations become extremely computationally draining and non-
trivial.

Due to the stochasticity of GAs, another problem we encountered in our initial tests was
that the population member with the best fitness in the final generation of the algorithm was
not always the best member throughout the entire algorithm. Often, the best population
members were accidentally eliminated through either selection, crossover, and mutation. To
control this, some forms of elitism were implemented and tested.

While elitism did not seem to cause significant changes in convergence for most func-
tions, many of the highly multimodal functions converged more quickly with the assistance
of elitist recombination. This could indicate that elitist recombination could help oscillatory
functions converge more easily and accurately. However, it is important to note that while
convergence is faster in a generational sense, elitist recombination increases the number of
objective function evaluations within a single generation. However, although elitist recom-
bination the oscillatory functions in converging more accurately, it is important to note
that for more complex functions, the quick convergence may hinder the genetic algorithm
from fully exploring the search space and locating the global minimum. In general, within
GAs, a careful balance must be struck between increasing algorithm speed and avoiding
premature convergence.

Aside from the running mean termination criterion and elitism, different crossover and
mutation schemes were also explored or implemented, leaving a variety of parameters to
test within the GAs. In order to formulate a more efficient and accurate algorithm, we
wanted to explore these combinations and tune parameters to determine the ideal schemes
and settings moving forward. This led us to implement the Taguchi method to provide a
systematic yet efficient way to test and tune parameters.

2.3.2 Taguchi Results

Given the quantity and range of the various hyperparameters involved in our algorithm, we
found that a combinatorial approach to testing parameter sets would be unfeasible. This
was especially evident when considering the stochasticity of GAs and the need to test a
multitude of trials for each experimental parameter set.

Taguchi’s method of robust experimental design, as outlined previously, was employed
to design experiments and reduce the amount of experimental trials necessary to draw
meaningful results. The orthogonal array that was implemented consisted of 36 different
experiments and can be found in Appendix A.

With the 11 different factors that we decided to test, ranging from 2 to 3 levels each, a
factorial approach would have necessitated 11,664 different experiments. With the Taguchi
experimental approach, we were able to run 100 trials of each experiment, a drastic difference
from the 1,166,400 experiments that would have been necessary for 100 trials of each factorial
experiment.

To analyze the results of the Taguchi experiments, SNRs were computed with respect
to fitness values. Average run time was also computed to give some measure of the overall
algorithm speed. Although robustness in algorithm convergence is most important, an
overly slow algorithm is nearly as impractical as an inaccurate one. By comparing these
values and performing ANOVA tests, a set of parameters ideal for minimizing fitness was

29

Sphere Function
Fitness-Geared GA Speed-Geared GA

Fitness 0.002 0.003
Run Time (in seconds) 0.228 0.036

Table 2.1: Sphere function: fitness vs. speed - the two forms of the genetic algorithm were run ten
times each and then average fitness convergence and run times were computed.

found, as well as a set that was determined to be ideal for minimizing run time. The results
of these analyses on the benchmark functions are shown in Appendix A.

Using the two different ideal parameter sets, we ran two versions of our genetic algorithm.
The results, shown in Tables 2.1 and 2.2 provide information on the minimum determined
by the algorithm as well as the amount of time, in seconds, that it took to converge.
It can be observed that for the sphere function, both algorithms converge closely to the
global minimum, yet the speed-geared algorithm performed six-times faster. Meanwhile, for
the Rastrigin function, the fitness-geared algorithm converges much more accurately, and
although the speed-geared algorithm is nearly 9 times faster, its convergence is unreliable.

For the sphere function’s fitness-geared algorithm, ideal parameters were population
size 1000, tournament-style selection set at 5% of population size, uniform crossover with
crossover probability 0.3, Gaussian mutation with mutation probability 0.9, elitist recombi-
nation, and the running mean termination criterion with a 5 generation comparison average
with a 0.1 precision. For the speed-geared algorithm, ideal parameters were population
size 250, tournament-style selection set at 3% of population size, one-point crossover with
crossover probability 0.3, Cauchy mutation with mutation probability 0.9, archival elitism,
and the running mean termination criterion with a 5 generation comparison average with
a 0.1 precision.

For fitness, these parameters were found to be statistically significant with p < 0:05:

� Population size

� Crossover probability

� Mutation scheme

� Mutation probability

� Number of generations for termination criterion comparison

� Precision level

For speed, these parameters were found to be statistically significant with p < 0:05:

� Population size

� Tournament size

� Crossover scheme

� Crossover probability

� Mutation scheme

30

� Mutation probability

� Number of generations for termination criterion comparison

� Precision level

� Elitist recombination

� Archival elitism

Rastrigin Function
Fitness-Geared GA Speed-Geared GA

Fitness 7.616 98.350
Run Time (in seconds) 3.158 0.362

Table 2.2: Rastrigin function: fitness vs. speed - the two forms of the genetic algorithm were run
ten times each and then average fitness convergence and run times were computed.

For the Rastrigin function’s fitness-geared algorithm, ideal parameters were population
size 1000, tournament-style selection set at 5% of population size, uniform crossover with
crossover probability 0.3, Gaussian mutation with mutation probability 0.3, elitist recombi-
nation, and the running mean termination criterion with a 5 generation comparison average
with a 0.1 precision. For the speed-geared algorithm, ideal parameters were population
size 250, tournament-style selection set at 3% of population size, one-point crossover with
crossover probability 0.3, Cauchy mutation with mutation probability 0.3, archival elitism,
and the running mean termination criterion with a 5 generation comparison average with
a 0.1 precision.

For fitness, all parameters besides archival elitism were found to be statistically signifi-
cant with p < 0:05. For speed, all parameters were found to be statistically significant with
p < 0:05.

When tuning parameters for genetic algorithms, it is important to consider the trade-
off between speed and accuracy. While it is obvious that a fast algorithm that converges
poorly has little practical utility, an extremely accurate algorithm that takes days or weeks
to converge is equally impractical. While the benchmark functions all had trivial run times,
the objective function for the Walker constellation problem that will be discussed in Chapter
5 is non-trivial to compute.

The crucial balance between speed and robust convergence inspired the idea to imple-
ment surrogate functions to minimize GA run time without sacrificing accuracy. The next
chapter will discuss our work in using different machine learning techniques to accomplish
this goal.

31

Chapter 3

Machine Learning

Machine learning (ML) is “a set of methods that can automatically detect patterns in data,
and then use the uncovered patterns to predict future data, or to perform other kinds of
decision making under uncertainty” [27]. It is based on the idea that machines can effectively
derive information from data and identity patterns with minimal human intervention. For
this project, we explored three different ML techniques: support vector regression (SVR),
multilayer perceptron networks (MLP), and radial basis function (RBF) networks. After
implementing SVRs on our benchmark functions, we decided not to pursue them further
because of their sensitivity to pre-selected, user-defined settings. The rest of this report will
focus on the two neural networks, although a review of SVRs, methodology, and results can
be found in Appendix B.

3.1 Background

3.1.1 Multiple Layer Perceptron (MLP) Neural Networks

A multilayer perceptron, also known as a feed-forward neural network, is one of the simplest
forms of a neural network. The original perceptron was composed of three layers: a layer
to receive the input, a layer to process it, and a layer to output the result. These early
perceptrons were used exclusively for classification. A multilayer perceptron is composed
of layers of perceptrons, and may be used for both classification and regression. For the
purposes of this problem, a multilayer perceptron was used for regression.

Architecture

The base unit of a multilayer perceptron is a node, modeled on a neuron in the human brain.
In general, a node takes the following form: The node receives an input x = (x1; : : : ; xN),
and the dot product of the inputs and the weights w = (w1; : : : ; wN) is computed. This
sum is then passed into an activation function �. The activation of the node is then

a = �

nX
i=1

wixi

!
(3.1)

In a feed-forward neural network, nodes are arranged into layers. The input is passed into
the first layer, and the outputs from the one layer of nodes form the input for the next layer,
allowing information to propagate forward through the network. The final layer contains a

33

Figure 3.1: General form of a neural network node

single neuron whose activation is the output of the network. This is modeled by

ŷ = f

LX
i=1

wiai

!
(3.2)

where ŷ is the network output, L is the number of nodes in the final hidden layer, and ai is
the activation of the ith node in the final hidden layer.

Learning

Learning refers the process of adjusting the weights of the network in order to minimize the
error of the network’s output. This is accomplished via backpropagation. The predictions
of the neural network are computed for a set of points for which the real values are known,
typically a subsection of the training set. The predicted values are compared to the real
values by means of a loss function, such as mean squared error (MSE).

MSE =
1

p

pX
i=1

(ŷi � yi)2 (3.3)

where i is each training point, p is the number of training points, ŷi is the predicted value
at each training point, and yi is the true value of each training point. This information
about the accuracy of the network’s prediction is used to adjust the weights of the network
according to an optimization algorithm. Over many iterations of this process, the network’s
loss should gradually decrease, indicating a more accurate estimation of the true value for
each input.

Multilayer Perceptron Parameters

The design, construction, and tuning of a multilayer perceptron involves choices on a number
of functions and hyperparamaters, which are parameters whose values are determined before
applying the network with any data.

34

� Number of hidden layers: A multilayer perceptron may have one or more hidden
layers. More than three layers (input, output, and one hidden layer) is referred to
as deep learning [24]. There is no upper limit on the number of layers, although
computational expense and speed limit the practical utility of highly deep networks
in practice.

� Number of nodes in each hidden layer: The input layer of a neural network has
the same number of nodes as elements or features of the input, and the number of
nodes in the output layer likewise corresponds to the number of features in the output,
or, in the case of a non-binary classification problem, the number of possible values.
However, each hidden layer may be comprised of any number of nodes. Larochelle
et al. [20] found that the same number of nodes in each hidden layer performed on
average better than either increasing (more nodes in each subsequent hidden layer) or
decreasing (fewer nodes in each subsequent layer) schemes. A larger number of nodes
than required has less negative impact than too few: capturing extraneous features
does not prevent predicting accurately, while a network structure which lacks enough
depth to encode the complexity of the problem will struggle to provide meaninful
outputs [1].

� Optimization algorithm: The most basic optimization algorithm for adjusting the
network’s weights is stochastic gradient descent and is still widely used in research
[33]. Based on stochastic gradient descent, many extension algorithms have been
developed over the last several decades to improve the speed of convergence. Three of
the most recent are RMSProp, Adadelta, and Adaptive Moment Estimation (Adam).
Of these, Adam is recommended for general cases as it has been found to slightly
outperform RMSProp and Adadelta [33].

� Learning rate: The initial learning rate is a hyperparameter of the optimization
algorithm. If the learning rate at any point is too large, it will cause the network’s
loss to increase rather than decrease over iterations and epochs. In general, the
accepted best practice is that the ideal learning rate is within a factor of two of the
smallest learning rate which causes the network to diverge (i.e. its loss to increase).
Typical values range from 1 to 10�6 [1].

� Mini-batch size: The mini-batch size is the size subset of the training upon which
the neural net updates each iteration. If the mini-batch size equals the size of the
training set, the number of iterations and the number of epochs are the same. The-
oretically, the batch size should have a direct impact only on the training time of a
network; as the batch size increases, fewer updates are performed per epoch, requiring
more epochs to reach a desired level of error. A large batch size allows for more in-
tuitive parallelization. Conversely, when combined with a large learning rate, a small
batch size allows for extended initial exploration of the space and introduces noise
into the network’s perception of the system, which can aid in avoiding overfitting and,
in practice, tends to produce better results. Typical choices of values range between
one and a few hundred, with 32 traditionally recommended as a starting point [1].
More recently, Masters and Luschi found that batch sizes under 32 outperformed
higher values and that even for large data sets, values higher than 64 rarely improved
performance [25].

� Number of epochs: The number of epochs is the number of full passes of the
training set. It is either set initially or determined by the choices of acceptable error

35

levels, batch size, and learning rate.

There are naturally many more features and parameters than those listed above which
may be implemented and tuned in a neural network. For the sake of initial exploration of
the suitability of neural networks for incorporation within a genetic algorithm, we limited
our initial exploration to the features listed above.

3.1.2 Radial Basis Function (RBF) Neural Networks

A radial basis function (RBF) network, similar to a MLP, is also a feed-forward neural
network that trains through backpropagation and can be tuned on many of the same pa-
rameters: number of nodes, optimization algorithm, learning rate, batch size, and number of
epochs. However, a RBF network differs from MLP as is only has a single hidden layer. Its
additional advantage over other machine learning techniques is its support for incremental
training, which allows the incorporation of newly generated populations from each iteration
of the genetic algorithm into training, potentially increasing overall model accuracy.

Architecture

Input 1

Input 2

Input 3

Input 4

Output

Hidden
layer

Input
layer

Output
layer

An RBF network computes a mapping Rn ! R. It consists of one input layer, one hidden
layer, and one output layer with only a single neuron. Each neuron in the input layer is
a predictor variable, while each neuron in the hidden layer is the radial basis activation
function. To perform regression with this network, the last neuron on the output layer
computes the following equation:

f(x) =
NX
i=1

wi’(x; ci) (3.4)

where x 2 Rn, N 2 N is the number of components, wi 2 R is the weight of the activation
functions, ’ denotes the specific activation function used, and ci 2 R is the center of the
activation functions.

36

Activation Functions

Many different functions can be used as the activation function for an RBF network acti-
vation function:

’(x; ci) = e�(jjx�cijj2)=2�2
; Gaussian; (3.5)

’(x; ci) =
1

(�2 + jjx� cijj2)�
; � > 0; (3.6)

’(x; ci) =
1

1 + e(jjx�cijj=�2)�� ; logistic; (3.7)

’(x; ci) = jjx� cijj; linear; (3.8)

The � in Equations (3.5), (3.6), and (3.7) is used to control the smoothness of the interpo-
lating function. The � in Equation (3.7) is a bias that can be tuned. Equations (3.5), (3.6),
and (3.7) are also localized radial basis functions, meaning that ’ ! 0 as jjx � cijj ! 1.
[38]

Because the neurons naturally have Gaussian-like receptive fields [38], the Gaussian
is typically selected as the canonical RBF. Along with being compact and positive, it is
also the only factorizable RBF, which makes it a very desirable candidate for hardware
implementation.

The equation for the Gaussian RBF comes from the idea that we can approximate any
function using a linear combination of Gaussians. Given the following Gaussian probability
density function:

g(x) =
1

�
p

2�
e�

(x��)2

2�2 (3.9)

the left-hand coefficient can be discarded, which will eventually be re-factored into the
weights, and directly use the right-hand side as the activation function, setting � = ci.
This completes the construction of the simple Gaussian RBF, where the parameters, ci
and �i = 1

2�2
i
, can be initialized to constants selected from a random distribution of the

training set. These parameters are then adjusted accordingly to minimize the mean of
squares loss function as the neural network proceeds to train. However, if the training set
is insufficiently large or fails to capture the overall shape of the function, the model may
produce unsatisfactory results.

K-Means Clustering

To improve the speed and accuracy of the neural network training, the starting values for
�i and ci are ideally initialized to approximate the target function as closely as possible.
This is achieved through clustering, a method to characterize the overall distributions and
associations of a particular data set.

A common method used for clustering in the RBF Gaussian network is K-means clus-
tering, which splits the dataset into k groups, with k being a parameter set by the user.
Both Lloyd’s or Elkan’s algorithm achieves this partitioning in O(knT) time, where n is the
number of samples and T is the number of iterations [29]. After obtaining the partitioned
model, we can then set ci to be the cluster centers and

37

�i =
1

2�2
i

(3.10)

�i =
1

n

NX
j=1

jjxj � cijj (3.11)

indicating that �i is the average Euclidean distance between all data points that belong to
a specific cluster and that cluster’s center point.

3.2 Experiments & Methodology

3.2.1 MLP Neural Networks

Multilayer perceptrons were implemented with the Keras API [6] with Google Tensorflow
backend. Several supplementary libraries were also used, namely scikit-learn [29], numpy,
and matplotlib.

Multilayer perceptrons were tested on all 18 of the benchmarking functions. The training
and testing sets were generated either uniformly within the bounds of the design space (F1
- F8, F15 - F18) or from a normal distribution with standard deviation � = 1 and centers
� as the standard starting points given in [26] for each benchmark function (F9 - F14). In
general, of the data that was generated, 70% was allocated for training and 30% reserved
for validation testing.

Before training, the points and corresponding objective function values were normalized
to have mean � = 0 and standard deviation � = 1 using the StandardScaler function
within the scikit-learn.preprocessing library. Other scalers and normalizers, includ-
ing MinMaxScaler, MaxAbsScaler, and normalization based on the known bounds of the
function were tested, but none performed appreciably differently from StandardScaler.

3.2.2 RBF Neural Networks

Radial basis functions (RBF) were also implemented using the Keras API [6] with Tensorflow
backend. Because there was no existing built-in RBF layer, we wrote our own using a
Gaussian activation function and k-means as the initializer for the � and �. Scikit-learn [29]
was used for k-means clustering and normalization, numpy was used for data wrangling, and
matplotlib was used for generating graphs. To speed up testing of the parameters, we also
used the multiprocessing Python module to run all our simulations in parallel, drastically
reducing the computational time. The dataset was uniformly randomly generated, where
70% was allocated for training and 30% was allocated for testing.

We then computed the effectiveness of the radial basis function network across all of
the benchmark functions. For each, we explored the following hyperparameters: number of
data points, number of nodes in the hidden layer, number of epochs, batch size, the toggle
for training �, and the toggle for training the � values.

38

3.3 Results

3.3.1 MLP Neural Networks

For the purposes of our testing, the batch size, learning rate, and number of training points
were varied. In general, for neural networks it is recommended to test parameters on a
logarithmic scale, as linear increases in numeric parameters rarely demonstrate a noticeable
effect and the range of possible values is wide [1].

Training Set Size

The most intuitive parameter to vary external to the neural network itself is the size of the
training set. As a larger sample, a larger training set in general better reflects the overall
traits of the whole population, the image of the objective function. We predicted that in
some cases, some functions would be sufficiently complex that a very large number of points
would required to accurately model them regardless of the internal parameters of the neural
net. To that end, a MLP was trained on all eighteen canonical benchmarking functions with
either 1,500 total points or 15,000 total points, and with the following parameters:

� Learning rate = 0.001

� Number of epochs = 260

� Batch size = 16

� Number of nodes per layer = 128

The exact threshold at which the training set becomes large enough to model accurately is
naturally function specific, but a major improvement from increasing the training set size
would be visible with 10,500 training points in comparison to 1,050 training points. More
sensitive tuning could then be performed on functions demonstrating such an effect.

For twelve out of eighteen functions, 1,050 points was sufficient to predict the objective
function with reasonable accuracy. For the most accurate, plotting predicted points against
real values almost exactly reflected a the diagonal line x = y, as shown in Figure 3.2.

For others, the plots showed more variation, but retained the overall hierarchy of points.
The increase in the size of the training set improved the performance of the neural network,
grouping points closer to the x = y line. However, the model trained on only 1; 000 points
was sufficient to order the test points. On balance, the additional computation required
for a larger training set outweighs an incremental gain over an already sufficient model.
This is most significant for the purposes of incorporating a machine learning model into
a genetic algorithm, since the absolute values of individual points are less important than
their relative fitness. Preserving solely the hierarchy of points would allow the genetic
algorithm to correctly converge. For two functions, the Quartic function (F4) and the
Foxholes function (F5) increasing the size of the training set did affect improvement in the
performance of the network. For four functions—Schwefel (F6), Rastrigin (F7), Levy (F16),
and Schaffer No. 2 (F17)—a 10-fold increase in number of training points still resulted in
poor predictions. At both training set sizes, the neural net was unable to learn the function
and provide informative output.

39

Figure 3.2: Using a set of 1000 randomly distributed points, an arti�cal neural network was trained
on the Sphere function. The predicted �tness values are plotted against the true �tness values for
500 randomly selected points. Despite the relatively small training set, the predicted �tness values
follow the x = y line, reecting almost perfect accuracy.

Figure 3.3: Using a set of 1000 randomly distributed points, an arti�cal neural network was trained
on the Griewangk function. The predicted �tness values are plotted against the true �tness values
for 500 randomly selected points. The predicted �tness values follow thex = y line with reasonable
error.

40

Figure 3.4: Plots of the predicted and real �tness values for two neural networks trained on the
Foxholes function. The �rst was trained on 1,000 points and tested on 500; the second trained on
10,000 and tested on 5,000. The increase in the size of the training set substantially improved the
accuracy of the neural network.

41

Learning Rate

As mentioned previously, typical learning rates for neural networks range from 0:1 to 1 �
10� 6. Learning rates of 0:1; 0:001; 0:0001; and 0:000001 were tested for eighteen functions
with the following remaining parameters.

� Number of points = 1,500 (1,000 training, 500 testing)

� Number of epochs = 260

� Batch size = 16

� Number of nodes per layer = 128

The resultant plot groups functions by two categories based on the results in the previous
section: functions for which the neural network performs well and functions for which the
neural network performs middling or poorly and may or may not be sensitive to parameter
values. This division was motivated both by the di�erent trends in both groups and by the
di�erent scales needed to plot the results accurately. In general, for the �rst category of

Figure 3.5: r 2 values plotted against learning rate for all eighteen benchmarking functions. Optimal
values appear between 10� 4 and 10� 2 in most cases.

functions, values between 10� 4 and 10� 2 perform best, as seen in Figure 3.5. Plotting the
loss of the neural network over its training, as in Fig 3.6, con�rms that too large a learning
rate results in large oscillations and even an increase in loss over training. On the other
hand, too low a learning rate and the training of the model is considerably slowed, requiring
a much longer duration to reach reasonable error.

For the second category of functions, varying the learning rate did not cause measurable
improvement, with the exception of the Levy function (F16 in Figure 3.5). Despite the
improvement, however, the neural network accuracy remains mediocre, peaking at slightly
over 60%.

42

Figure 3.6: Neural network loss is plotted over epochs at di�erent learning rates, as a visualization
of training, for the Rosenbrock Function. All other parameters were kept constant. A high learning
rate can result in an increase in loss over epochs, while too low a rate prevents convergence in a
reasonable timeframe.

Batch Size

Theoretically, mini-batch size should a�ect mainly the speed of training rather than �nal
accuracy, and therefore may be tested independently of other hyper-parameters [1]. All
eighteen functions were tested at mini-batch sizes of 8; 16; 32; 64; and 128. The results are
plotted for the high-performing and medium- or low-performing functions in Figure 3.7. In
general, mini-batch size shows little consistent e�ect. In no cases did an increase in mini-
batch size result in a higherR2 value than all lower mini-batch sizes. For some functions,
an increase in mini-batch size corresponds with a slight decrease in performance, motivating
the decision to retain a mini-batch size of 16 as the default.

43

Figure 3.7: Model accuracy is plotted against di�erent batch sizes for all 18 functions.

3.3.2 RBF Neural Networks

Optimizer Selection

We compared the e�ects of di�erent optimizers from the Keras [6] package, speci�cally the
stochastic gradient descent (SDG) optimizer, the Adadelta optimizer, the Adam optimizer,
and the Nadam optimizer. Overall, Adadelta, Adam, and Nadam all demonstrate a faster
convergence to low mean square errors in comparison to SDG, most likely due to the ad-
ditional feature of adaptive learning rates based on a moving window of gradient updates.
Adam stores another feature, the momentum, in order to more accurately correct bias, and
excels over Adadelta in the more complicated multimodal functions. Nadam is a further
improvement upon Adam, as it uses Nesterov accelerated gradient descent instead of the
traditional gradient descent, which performs more accurate steps in the gradient direction
by updating the parameters with momentum before computing the gradient.

Training Set Size

While having a large number of data points well distributed throughout the range of the
function is crucial in allowing the neural network model to learn its shape, such a large
amount of data is not always available and training may become computationally heavy.
Selecting the optimal number of data points thus becomes a balance of accuracy versus
speed. When we increase the number of data points from 1000 to 10000, the predicted
data points �t much better on the y = x line, where y is the predicted �tness and x
is the real �tness. The model in learns comparatively faster with more training data,
resulting in a much greater rate of mean square error loss decrease. However, training of
the NDAT A = 1000 model is usually much slower than theNDAT A = 10000 model. For
example, in the Step function, the former only took 8:11 seconds while training of the latter
took 29:75 seconds|an approximate threefold slowdown.

44

Number of Hidden Nodes

We set up our RBF network such that the number of nodes in the hidden layer is directly
equivalent to the k used in k-means clustering. This implies that if we have too few hidden
nodes, we have fewer Gaussians, rendering the network di�cult to train and unable to
capture the overall shape of the function. In contrast, if we have too many hidden nodes,
the network will be slowed and become increasingly susceptible to residual noise. We see
this e�ect in Figure 3.8: when we increase the number of nodes from 32 to 128, the accuracy
actually decreases as the points adapt a more erratic nature due to noise. This same pattern
applies to our more complicated functions; regardless of the complexity of the function
being approximated, we conclude that selecting a number of nodes towards the lower end
contributes to higher accuracy.

Number of Epochs

Changing the number of epochs directly a�ects the quality of the model predictions as this
parameter inuences how long we leave the network to train. The correlation is not a linear
one, however; in most of our benchmark functions, the output of the loss function plateaus
around the 100� 200 epoch count. Figure 3.9 demonstrates the e�ects of increasing the
number of epochs from 100 to 250 for the Bukin No. 6 function. From the di�erence
plots, we see that the model training on 100 epochs does not di�er signi�cantly from one
training on 250 epochs, as both demonstrate a convergence of the �tness di�erences around
0 (note that the graph with 100 epochs is scaled slightly di�erently than the graph with 250
epochs). We can thus set the training threshold to around 100 epochs without substantially
sacri�cing the goodness of the model predictions.

Batch Size

Depending on the number of hidden nodes we set for a particular function, we decreased
and increased our batch sizes accordingly, although we did generally work with a range
from 8 to 32, incremented in powers of 2. There was no distinct pattern in the relationship
between batch sizes and quality of predictions, indicating that the ideal batch size would
unfortunately need to be manually tuned by the user. In Figure 3.10 and 3.11, we see the
e�ects of adjusting batch size on the Step function: a batch size of 1 appears to introduce
too much noise, while a batch size of 64 appears to reduce the stochasticity of the gradient
descent by more than is necessary. The optimal batch size, in this case, would lie somewhere
between 8� 16, with 8 performing better at lower �tness values and 16 performing better
at higher �tness values.

� and c Toggles

Although the initialized values for � and c were already set throughk-means clustering, their
respective degrees of inuence on the model prediction can be adjusted by the assignment
of weights. By toggling the training for c and � on/o�, we can then control these weights,
allowing the model to acquire a better �t. However, care needs to be taken while training
with these weights|because the accumulated mean square errors may be extremely large
while training � and c combined with a high number of hidden nodes, NaNs will sometimes
be generated.

45

